Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Commercial autonomous machines is a thriving sector, one that is likely the next ubiquitous computing platform, after Personal Computers (PC), cloud computing, and mobile computing. Nevertheless, a suitable computing substrate for autonomous machines is missing, and many companies are forced to develop ad hoc computing solutions that are neither principled nor extensible. By analyzing the demands of autonomous machine computing, this article proposes Dataflow Accelerator Architecture (DAA), a modern instantiation of the classic dataflow principle, that matches the characteristics of autonomous machine software.more » « less
-
In the realm of reinforcement learning (RL), off-policy evaluation (OPE) holds a pivotal position, especially in high-stake human-centric scenarios such as e-learning and healthcare. Applying OPE to these domains is often challenging with scarce and underrepresentative offline training trajectories. Data augmentation has been a successful technique to enrich training data. However, directly employing existing data augmentation methods to OPE may not be feasible, due to the Markovian nature within the offline trajectories and the desire for generalizability across diverse target policies. In this work, we propose an offline trajectory augmentation approach, named \textbf{OAT}, to specifically facilitate OPE in human-involved scenarios. We propose sub-trajectory mining to extract potentially valuable sub-trajectories from offline data, and diversify the behaviors within those sub-trajectories by varying coverage of the state-action space. Our work was empirically evaluated in a wide array of environments, encompassing both simulated scenarios and real-world domains like robotic control, healthcare, and e-learning, where the training trajectories include varying levels of coverage of the state-action space. By enhancing the performance of a variety of OPE methods, our work offers a promising path forward for tackling OPE challenges in situations where human-centric data may be limited or underrepresentative.more » « less
-
Reinforcement learning (RL) is broadly employed in humaninvolved systems to enhance human outcomes. Off-policy evaluation (OPE) has been pivotal for RL in those realms since online policy learning and evaluation can be high-stake. Intelligent tutoring has raised tremendous attentions as highly challenging when applying OPE to human-involved systems, due to that students’ subgroups can favor different pedagogical policies and the costly procedure that policies have to be induced fully offline and then directly deployed to the upcoming semester. In this work, we formulate on-demand pedagogical policy selection (ODPS) to tackle the challenges for OPE in intelligent tutoring. We propose a pipeline, EDUPLANNER, as a concrete solution for ODPS. Our pipeline results in an theoretically unbiased estimator, and enables efficient and customized policy selection by identifying subgroups over both historical data and on-arrival initial logs. We evaluate our approach on the Probability ITS that has been used in real classrooms for over eight years. Our study shows significant improvement on learning outcomes of students with EDUPLANNER, especially for the ones associated with low-performing subgroups.more » « less
An official website of the United States government

Full Text Available